Battle of the Sources

LED vs. Fluorescent

Tale of the Tape

The Challenger - LED

- Around since 1960s
- General illumination since mid 1990s
- Two methods to deliver with light;
 - RGB Mix
 - LED "Pump" with Phosphors
- Multiple CCTs
- Mid-High CRI
- Excellent Efficacy

The Incumbent - Fluorescent

- Introduced 1938
- Uses UV energy to excite phosphors to deliver light
- Multiple CCTs
- Mid-High CRI
- Excellent Efficacy

"I'm working on a job and it has to be LED."

"I'm working on a job and it has to be LED."

8 Rounds

- Light Generation
- Correlated Colour Temperature Options
- Colour Consistency
- Colour Rendering Index
- Life
- Temperature Issues
- Environmental Impact
- Energy Efficiency

Round 1 Light Generation

Operation

When started, the electrodes at each end of the lamp emit electrons.

- The electrons travel through the tube in the form of an electrical current. The electrons collide with the mercury atoms contained in the glass bulb.
- 2. After the collision, the mercury atom releases invisible ultraviolet energy.
- 3. The ultraviolet energy strikes the phosphor coating and the phosphor converts the ultraviolet to visible light.

Rare Earth Phosphors

- Rare Earth Phosphor elements such as Cerium, Europium, Terbium, Yttrium are used in fluorescent lamps such as; T8 and T5 lamps, high CRI T12 lamps, and all compact fluorescent lamps
- Rare Earth Phosphors make up 85% of the phosphors used in fluorescent lamps

Under Visible Light

Under Ultraviolet Light

- LED = Light Emitting Diode
- A semiconductor device that converts electricity (electrons) into light (photons)
- The light from an LED has an inherently narrow spectrum

- LEDs like other diodes, consist of a single P-N semiconductor junction.
- The P-N materials are then placed on a substrate.

- A negative charge is applied to the n-type side causing current to flow towards the p-type side.
- Extra electrons in the ntype fall into holes in the p-type releasing energy in the form of photons

- Two main chemistries are currently used
- InGaN (Indium Gallium Nitride)= Green and Blue
- AlGaInP (Aluminum Gallium Indium Phosphide and Aluminum Indium Gallium Nitride)= Red and Amber

LED – 10

Fluorescent – 9

Round 1 Light Generation

Round 2 Correlated Colour Temperature Options

Correlated Colour Temperature

Correlated Colour Temperature

CIE 1931 (x, y) Diagram

Correlated Colour Temperature

LED - 10

Fluorescent – 9

Round 2 Correlated Colour Temperature Options

Round 3 Colour Consistency

Binning Example – Ultra Simplified!

CIE 1931 (x, y) Diagram

Luminaire Requirements:		
Correlated Color Temperature (CCT)	The luminaire must have one of the following designated CCTs and fall within the 7-step chromaticity quadrangles as defined in the Appendix.	
	Nominal CCT ⁽¹⁾	<u>CCT (K)</u>
	2700 K	2725 ± 145
	3000 K	3045 ± 175
	3500 K	3465 ± 245
	4000 K	3985 ± 275
	4500 K	4503 ± 243
	5000 K	5028 ± 283
	5700 K	5665 ± 355
	6500 K	6530 ± 510

ANSI / Energy Star Bin Definitions: Key driver for General Illumination

LED – 7

Fluorescent – 9

Round 3 Colour Consistency

Round 4 Colour Rendering Index

Colour Rendering Index

The Colour Rendering Index asks one basic question:

How closely does the appearance of these eight color patches illuminated by your light source match the same colour patches rendered under the reference light source?

100 is a perfect match

Colour Rendering Index

100 CRI

85 CRI

100 CRI

86 CRI

85 CRI 72 CRI 85 CRI 72 CRI

B.I.Q

- What is the latitude of Toronto?
- What is the 8th element in the periodic table?
- In what language was Oh Canada written?
- Name the 3 stars in the constellation Orion's belt.
- Who is the only basketball coach in the history of the University of Kansas with a losing record?

- 43.7° N
- Oxygen
- French
- Alnitak, Alnilam, Mintaka
- Dr. James Naismith

Light Source SPDs

Test Color #	Munsell Notation	CIE Specification			ISSE NOCH		
(R ₁ -R ₁₄)		x	у	Ŷ	- ISCC-NBS Name	Approximate Appearance	
1	7.5 R 6/4	0.375	0.331	29.9	Light grayish red		
2	5 Y 6/4	0.385	0.395	28.9	Dark grayish yellow		
3	5 GY 6/8	0.373	0.464	30.4	Strong yellow green		
4	2.5 G 6/6	0.287	0.4	29.2	Moderate yellowish green 🔸		
5	10 BG 6/4	0.258	0.306	30.7	Light bluish green		
6	5 PB 6/8	0.241	0.243	29.7	Light blue		
7	2.5 P 6/8	0.284	0.241	29.5	Light violet		
8	10 P 6/8	0.325	0.262	31.5	Light reddish purple		
9	4.5 R 4/13	0.567	0.306	11.4	Strong red		
10	5 Y 8/10	0.438	0.462	59.1	Strong yellow		
11	4.5 G 5/8	0.254	0.41	20	Strong green		
12	3 PB 3/11	0.155	0.15	6.4	Strong blue		
13	5 YR 8.4	0.372	0.352	57.3	Light yellowish pink (Caucasian complexion)		
14	5 GY 4/4	0.353	0.432	11.7	Moderate olive green (leaf green)		

- Additional R9 values are not included in CRI
- Decent R9 values can be as low as 10
- Excellent R9 >20

- TM-30-15
 - 3 prong approach
 - Fidelity Index Rf
 - Gamut Index R_g
 - Colour Vector Graphic

- TM-30-15
- 99 CES

(Colour Evaluation Samples)

64 h	CES 2	CES 3	CESIA	CES 5	CES 6	CES 7	CES 8
tyre: E	Туре С.	Туре А	TVPP-A	Туре 🕅	Type C	Type E	Туре D
CES 9	GES 10	CES 11	CES 22	CES 13	CES 14	CES 25	CES 16
Type F	Туре 15	Type C	typeiA	Type F	Type'E	Type B	Type C
CES 17	CES 18	GBS 1.9	CE5-20	49.57	(65.22		1533
Type C	Type B	Курсі Е	TVDc F	Neo	Type D		
CE5-25	19 W	CE5 27	CES 28	(1544)	CES 30	91140	665 62
Type A	(With the	Type A	Type G	Trace	Туре А	(April)	Type G
114 M	CE5 84	CE5 35	(15-34	CES 37	102	CES 39	CES 40
	Type G	Type G	Type A.	Туре А		Type F	Type F
16.6	CE5 42	CES 43	CES 44	CES 45	CE\$ 46	¢85.47	CE5 48
	Type F	Type C	Type F	Type G	Туре Е	Type C	TVRED
CES 49	CE5 50	CES 51	CES S2	CES 53	Ces 54	26555	CES 56
Type D	Type F	Type F	Type F	Type E)Werte	Туре G
CE5 57	CES 58	as a	DY -	CESAL	CES 62	CES 63	CES 64
Type C	Туре D	≓y, = €		Туре F	Туре С	Type F	Туре Е
CES 65	CES 66	CES 67	CES 68	CES 69	CES 70	CES 71	EES/72
Type F	Type E	Түре Е	Туре F	Туре F	Туре F	Type F	Type F
CE5 73	CES 74	CES 75	CES 76	CES 77	CES 78	CES 79	CES 80
Type F	Туре С	Туре F	Туре F	Туре А	Type F	Туре с	Type G
CES 81	12230	CES 83	CES 84	CES 85	CES 86	CES 87	CES 58
Type A	190015	Type C	Туре F	Type A	Type C	Type F	TYPEE
CES 89	CE5 90	CES-01	CES 92	GES 93	CES 94	GES-95	015.66
Type A	Туре Е	Type A:	Туре А	Type D	Туре С	Туря А	TYPE
CES 97	CE5 98	CES 99					
Type F	Type A	Type E					

- TM-30-15
 - 16 Hue angle bins
 - Used to construct gamut

- TM-30-15
 - Gamut Area Polygons

Lower CCT = 99 R_g Higher CCT – 91 R_g

- TM-30-15
 - Colour Vector Graphic

LED – 8

Fluorescent – 8

Round 4 Colour Rendering Index

Round 5 Life

- For Traditional Light Sources life is reported as "mean" time to failure
- Average time for a percentage of lamps to fail (typically 50%)

				Instan	t Start	Program	med Start	
Manufacturer Lamp Type		Lumens	Efficacy		Rated Ave	erage Life		Hg Content
		(Initial)	(LPW)	3hrs/start	12hrs/start	3hs/starrt	12hrs/start	(mg)
800 Series	-							
A	F32T8/SPX	2,925	91	21,000	30,000	30,000	36,000	3.0
В	FO32/800	2,950	92	24,000	28,000	30,000	36,000	3.5
с	F32T8 800	2,850	89	24,000	30,000	30,000	36,000	1.7
Long Life								
A	F32T8/XL/SPX	2,925	91	25,000	36,000	40,000	45,000	3.0
В	FO32/XP	3,000	93	24,000	40,000	40,000	42,000	3.5
с	F32T8/XEW	2,950	92	30,000	36,000	38,000	44,000	1.7
Extra Long Life								
A	F32T8 SXL	2,850	89	31,000	40,000	55,000	60,000	3.0
в	FO32/XP/XL	2,960	92	36,000	52,000	65,000	67,000	3.5
с	F32T8/XLL	2,950	92	46,000	52,000	60,000	70,000	1.7
High Lumen		1						
A	F32T8/XL/SPX/HL	3,100	97	25,000	36,000	40,000	45,000	3.0
в	FO32/XPS	3,100	97	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV	3,100	97	24,000	30,000	30,000	36,000	1.7
Energy Saving 28W	1							
A	F28T8/XL/SPX	2,675	96	24,000	34,000	45,000	50,000	3.0
В	FO28/XP/SS	2,725	97	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV/EW	2,725	97	32,000	38,000	38,000	44,000	1.7
Energy Saving 25W	1							
A	F32T8/25W/SPX	2,500	100	36,000	40,000	50,000	55,000	3.0
В	FO32/25W/XP/SS	2,500	100	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV/XEW	2,500	100	32,000	38,000	38,000	44,000	1.7
Extra Long Life - E	nergy Saving 28W							
В	FO28/XP/XL/SS	2,600	93	50,000	75,000	80,000	84,000	4.2
с	F32T8/ADV/XLL 28	2,675	94	60,000	68,000	80,000	90,000	1.7
Extra Long Life - E	nergy Saving 25W							
В	FO32/25W/XP/XL/SS	2,400	96	50,000	75,000	80,000	84,000	4.2
с	F32T8/ADV/XLL 25	2,400	96	60,000	68,000	80,000	90,000	1.7

Illuminating	Illuminating IES LM-79-08
Approved Method: Measuring Lumen Maintenance of LED Light Sources	Approved Method: Electrical and Photometric Measurements of Solid-State Lighting Products

- Requirement for measuring LED life
- L70 Time elapse to 70% of initial lumen output
- L50 Time elapse to 50% of initial lumen output
- * Keep in mind many drivers are rated at 60,000 hrs.

Figure E1. Graphic representation of lumen maintenance life projection using 6000 hours of LM-80-08 data

Figure E2. Graphic representation of lumen maintenance life projection using 10000 hours of LM-80-08 data

Lumen Maintenance 2650K LUXEON Rebel at 1A, 55C (TJ≅82C), 85C (TJ≅112C), 105C (TJ≅131C) Normalized to 1 at 0 hours

LED – 9

Fluorescent – 9

Round 5 Life

Round 6 Temperature Issues

T5/T8 Lumens vs. Temperature

- Each color has a different sensitivity to temperature
- Each color degrades at a different rate
- In general, warmer colors are more temperature sensitive and degrade faster than cooler ones
- The degradation rate increases with increased junction temperature

Light output degrades as temperatures increase

- Heat seriously reduces LED life.
- ▶ At 63^o C life is 60,000 hrs L50: 40,000 hrs L70
- At 74º C life is 25,000 hrs L50; 16,000 hrs L70

LED – 7

Fluorescent – 8

Round 6 Temperature Issues

Round 7 Environmental Impact
Fact: Fluorescents have mercury. LEDs do not.

Myth: LEDs are therefore better for the environment.

Milligrams of Mercury in 4' Fluorescent tube

				Instant Start		Programmed Start		
Manufacturer	Lamp Type	Lumens	Efficacy	Rated Av		erage Life		Hg Content
		(Initial)	(LPW)	3hrs/start	12hrs/start	3hs/starrt	12hrs/start	(mg)
800 Series								
А	F32T8/SPX	2,925	91	21,000	30,000	30,000	36,000	3.0
в	FO32/800	2,950	92	24,000	28,000	30,000	36,000	3.5
с	F32T8 800	2,850	89	24,000	30,000	30,000	36,000	1.7
Long Life								
А	F32T8/XL/SPX	2,925	91	25,000	36,000	40,000	45,000	3.0
в	FO32/XP	3,000	93	24,000	40,000	40,000	42,000	3.5
с	F32T8/XEW	2,950	92	30,000	36,000	38,000	44,000	1.7
Extra Long Life								
А	F32T8 SXL	2,850	89	31,000	40,000	55,000	60,000	3.0
в	FO32/XP/XL	2,960	92	36,000	52,000	65,000	67,000	3.5
с	F32T8/XLL	2,950	92	46,000	52,000	60,000	70,000	1.7
High Lumen								
А	F32T8/XL/SPX/HL	3,100	97	25,000	36,000	40,000	45,000	3.0
в	FO32/XPS	3,100	97	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV	3,100	97	24,000	30,000	30,000	36,000	1.7
Energy Saving 28W				-	-	-		
А	F28T8/XL/SPX	2,675	96	24,000	34,000	45,000	50,000	3.0
в	FO28/XP/SS	2,725	97	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV/EW	2,725	97	32,000	38,000	38,000	44,000	1.7
Energy Saving 25W					-	-	-	
А	F32T8/25W/SPX	2,500	100	36,000	40,000	50,000	55,000	3.0
в	FO32/25W/XP/SS	2,500	100	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV/XEW	2,500	100	32,000	38,000	38,000	44,000	1.7
Extra Long Life - Energy Saving 28W								
В	FO28/XP/XL/SS	2,600	93	50,000	75,000	80,000	84,000	4.2
с	F32T8/ADV/XLL 28	2,675	94	60,000	68,000	80,000	90,000	1.7
Extra Long Life - E	nergy Saving 25W							
в	FO32/25W/XP/XL/SS	2,400	96	50,000	75,000	80,000	84,000	4.2
с	F32T8/ADV/XLL 25	2,400	96	60,000	68,000	80,000	90,000	1.7

Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercury-free. This study aimed to determine if LEDs

engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except lowintensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs. - Copyright © 2010 American Chemical Society

Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercuryfree. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory limits (186 mg/L; regulatory **limit: 5).** However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs. - Copyright © 2010 American Chemical Society

Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercuryfree. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory

limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The

environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs. - Copyright © 2010 American Chemical Society

Light-emitting diodes (LEDs) are advertised as environmentally friendly because they are energy efficient and mercuryfree. This study aimed to determine if LEDs engender other forms of environmental and human health impacts, and to characterize variation across different LEDs based on color and intensity. The objectives are as follows: (i) to use standardized leachability tests to examine whether LEDs are to be categorized as hazardous waste under existing United States federal and California state regulations; and (ii) to use material life cycle impact and hazard assessment methods to evaluate resource depletion and toxicity potentials of LEDs based on their metallic constituents. According to federal standards, LEDs are not hazardous except for low-intensity red LEDs, which leached Pb at levels exceeding regulatory

limits (186 mg/L; regulatory limit: 5). However, according to California regulations, excessive levels of copper (up to 3892 mg/kg; limit: 2500), Pb (up to 8103 mg/kg; limit: 1000), nickel (up to 4797 mg/kg; limit: 2000), or silver (up to 721 mg/kg; limit: 500) render all except low-intensity yellow LEDs hazardous. The

environmental burden associated with resource depletion potentials derives primarily from gold and silver, whereas

the burden from toxicity potentials is associated primarily with arsenic, copper, nickel, lead, iron, and silver. Establishing benchmark levels of these substances can help manufacturers implement design for environment through informed materials substitution, can motivate recyclers and waste management teams to recognize resource value and occupational hazards, and can inform policymakers who establish waste management policies for LEDs. - Copyright © 2010 American Chemical Society

LED – 7

Fluorescent – 7

ALL LAMPS MUST BE RECYCLED!

Round 7 Environmental Impact

Round 8 Energy Efficiency Efficacy

- 186 lm/W has been achieved under laboratory conditions
- Measured for milliseconds
- At cold temperature
- Not for mass production nor maintained levels - Yet
- Research indicates maximum efficacy of 254 lm/W

When comparing light sources, color temperatures should be the same.

Light output degrades as temperatures increase

				Instant Start		Programmed Start		
Manufacturer	Lamp Type	Lumens	Efficacy		Rated Ave	erage Life		Hg Content
		(Initial)	(LPW)	3hrs/start	12hrs/start	3hs/starrt	12hrs/start	(mg)
800 Series								
A	F32T8/SPX	2,925	91	21,000	30,000	30,000	36,000	3.0
В	FO32/800	2,950	92	24,000	28,000	30,000	36,000	3.5
с	F32T8 800	2,850	89	24,000	30,000	30,000	36,000	1.7
Long Life								
A	F32T8/XL/SPX	2,925	91	25,000	36,000	40,000	45,000	3.0
В	FO32/XP	3,000	93	24,000	40,000	40,000	42,000	3.5
с	F32T8/XEW	2,950	92	30,000	36,000	38,000	44,000	1.7
Extra Long Life								
A	F32T8 SXL	2,850	89	31,000	40,000	55,000	60,000	3.0
В	FO32/XP/XL	2,960	92	36,000	52,000	65,000	67,000	3.5
с	F32T8/XLL	2,950	92	46,000	52,000	60,000	70,000	1.7
High Lumen								
A	F32T8/XL/SPX/HL	3,100	97	25,000	36,000	40,000	45,000	3.0
В	FO32/XPS	3,100	97	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV	3,100	97	24,000	30,000	30,000	36,000	1.7
Energy Saving 28W								
A	F28T8/XL/SPX	2,675	96	24,000	34,000	45,000	50,000	3.0
В	FO28/XP/SS	2,725	97	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV/EW	2,725	97	32,000	38,000	38,000	44,000	1.7
Energy Saving 25W								
A	F32T8/25W/SPX	2,500	100	36,000	40,000	50,000	55,000	3.0
В	FO32/25W/XP/SS	2,500	100	24,000	40,000	40,000	42,000	3.2
с	F32T8/ADV/XEW	2,500	100	32,000	38,000	38,000	44,000	1.7
Extra Long Life - Energy Saving 28W								
В	FO28/XP/XL/SS	2,600	93	50,000	75,000	80,000	84,000	4.2
с	F32T8/ADV/XLL 28	2,675	94	60,000	68,000	80,000	90,000	1.7
Extra Long Life - Energy Saving 25W								
В	FO32/25W/XP/XL/SS	2,400	96	50,000	75,000	80,000	84,000	4.2
с	F32T8/ADV/XLL 25	2,400	96	60,000	68,000	80,000	90,000	1.7

LED – 9

Fluorescent – 8

Round 8 Energy Efficiency Efficacy

Score Card

LED	Round	Fluorescent
10	1 – Light Generation	9
10	2 – CCT Options	9
7	3 – Colour Consistency	9
8	lt's a Draw!!!	8
9	5 - Life	9
7	6 - Temperature	8
7	7 - Environment	7
9	8 - Efficacy	8
67		67

To Discount Fluorescent for LED

I don't have to sing well. I have auto-tune

We disagree.

The key is to recognize their respective strengths and use them

Thank you